

Flexible ducts

COMBIFLEX 2100

- Non insulated
- Aluminium/Polymer
- Standard

Combined Laminated flexibel ducts type COMBIFLEX 2100

The **COMBIFLEX 2100** is a fully flexible 6-layer aluminium / polyester laminate duct. The outside is a co-polymer, antistatic layer. The aluminium and polyester layers overlap each other entirely. This "sandwich" construction of the layers results in a higher external resistance against sparks.

Application

 The COMBIFLEX 2100 flexible ducts are used in ventilation, air conditioning, and air handling systems with low and moderate air pressure where a high mechanical strength, temperature and fire resistance is required

Composition

- Inner duct of the ALUFLEX AA3 type and a co-polymer outer jacket, total thickness: 145 μ Wire spacing: a steel spiral spring of different thicknesses and a pitch of 25 mm (Ø82-90 mm), 36 mm (Ø102-508 mm)
- Colour : Grey

Specification

- Temperature range: From 30°C till + 140°C
 Air velocity (max): 30 m / sec (5900 ft / min)
 Operating pressure (max): + 2500 Pa (250 mm WC)
 Bend radius: 0.54 x D + 25 mm
- Pressure loss: see diagram
- Diameter range: 82 mm 508 mm
 Fire resistance: LNE classification obtained M1
- Report number: F080235 Cemate/3

Packaging

 Each standard length of 10 m is compressed in an individual, reinforced cardboard box

Chemical resistence

Good resistance to many solvents

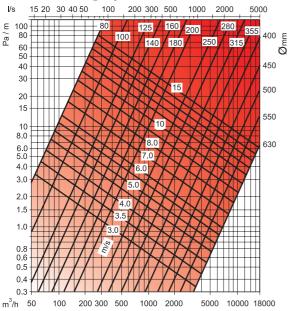
Restrictions

- The **COMBIFLEX 2100** ducts are not suitable for transporting air with a high concentration of acid and base
- The **COMBIFLEX 2100** cannot be used for discharging combustion gases from open fireplaces and oil-fired boilers

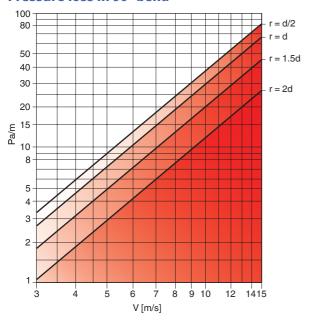
Flexible ducts

Accessories

Clamps type MCAAluminium tape type Alutape


Order example

Combiflex 2100, 254


Explanation:

Combiflex 2100 = Type of Flexible duct 254 = Diameter of flexible duct

Pressure loss graph

Pressure loss in 90° bend

